
Cooperative Jahn–Teller effects in PrO2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 175218

(http://iopscience.iop.org/0953-8984/20/17/175218)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 11:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 175218 (8pp) doi:10.1088/0953-8984/20/17/175218

Cooperative Jahn–Teller effects in PrO2

D Ippolito1, L Martinelli1 and G Bevilacqua2

1 CNISM and Dipartimento di Fisica ‘E. Fermi’, Via Buonarroti, 2, 56100 Pisa, Italy
2 CNISM and Dipartimento di Ingegneria dell’Informazione, Università di Siena,
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Abstract
A number of features recently observed experimentally in PrO2, such as anomalies in the
magnetic excitations spectrum, the reduction of the ordered magnetic moment below the
Néel temperature, the distortion of the oxygen cage and the splitting of the ground state in the
paramagnetic phase, are interpreted as consequences of electron–phonon coupling and
cooperative effects. A coupling to phonons with trigonal symmetry is found appropriate to
describe the experimental results. While a single center model can explain the reduction of the
ordered magnetic moment and also the main features of the differential cross section, a
cooperative model is necessary to interpret the observed distortion of the oxygen cage and the
observed splitting of the ground state into two doublets in the paramagnetic phase.

1. Introduction

In recent years there has been a particular interest in the study
of compounds containing localized 4f and 5f electrons, such
as lanthanide dioxide PrO2, [1–7] and the actinide dioxides
UO2 [8–13], NpO2 [14–21] and PuO2 [22, 23]. The most
relevant experimental issues concerning PrO2 are:

• At low temperature, PrO2 (antiferromagnet with Néel
point at TN = 13.5 K) has an anomalously small magnetic
moment [1, 4] when compared with the value expected
for the ground electron-spin state in a cubic crystal field.

• The magnetic excitation spectra obtained at 10 K
by inelastic neutron scattering by Boothroyd and co-
workers [2] exhibit at low energy, besides two peaks
separated by about 130 meV, a broad band (extending
from 10 to 80 meV) centered at about 25–30 meV and
a 160 meV shoulder.

• Neutron and x-ray diffraction measurements [5, 6] of
the crystallographic and magnetic structure have revealed,
below a temperature TD = (120 ± 2) K, an internal
distortion of the cubic oxygen cell surrounding the Pr4+
ion, confirmed by Webster et al [24] to be a distorted chiral
structure.

• Measurements of the specific heat capacity [6] have
shown that the Pr4+ ground state degeneracy is completely
removed below TN, while in the paramagnetic phase
(TN < T < TD) the ground state is a doublet, consistent
with a possible distortion of the crystal structure.

• Inelastic neutron scattering spectra made at increasing
temperature [24] show that the central broad band is also
present above TN, but its maximum shifts toward lower
energies when the temperature increases. A similar shift
is also observed for the second peak.

From a theoretical point of view, recent first-principles
studies of rare-earth dioxides [25] confirm the existence of
a tetravalent ground state configuration or, in other words,
that Pr4+ ions exist almost completely in a 4f1 configuration.
Since the Pr4+ ground state is orbitally degenerate, a dynamical
Jahn–Teller (JT) effect is expected. Actually, the broad
continuum in the magnetic excitation spectrum as well the
reduction of the ordered magnetic moment, when compared
with the value expected for the ground electron-spin state in a
cubic crystal field, have been interpreted as a manifestation of
a dynamical JT effect [2, 7]. In fact JT coupling with phonon
modes of proper symmetry can produce a number of levels
having electronic and vibrational character [26, 27]. However,
the distortion observed by neutron diffraction measurements
cannot be interpreted without considering cooperative effects.

Since the pioneering works of Dunitz [29] and Mc-
Clure [30] it is known that the interaction between JT active
ions mediated by an elastic crystal lattice is a possible mech-
anism for structural phase transitions. In fact, at low tempera-
ture, the intercenter interaction (or cooperative interaction) can
stabilize the JT distortion of each center, resulting in static dis-
tortion and the occurrence of level splitting becomes a char-
acteristic feature of the symmetry lowering that accompanies
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the phase transition. Cooperative JT effects [26, 35, 27] are
seen in a variety of crystals, as described in a number of pa-
pers [31–34].

Very recently a model of the static and dynamical JT effect
was proposed by Jensen [28] with the same purpose as ours,
namely to give a unified description of different properties of
PrO2, but following a different approach in tackling dynamical
JT effects and cooperative interactions. In [28] the observed
distortion is considered to be a static JT effect, then the
vibrational motion of oxygen ions produces a change of the
CF Hamiltonian of the Pr ions and the JT term is considered
to be induced by a local strain of t2 symmetry. Moreover
the antiferromagnetic phase is studied in detail, considering a
superexchange interaction. So this approach leads to a different
(and more complex) formalism; however, the results are similar
to ours where a comparison is possible.

In this work, instead of the above approach, starting from
an undistorted Oh symmetry we consider a dynamical JT
coupling on each center and a cooperative interaction between
neighboring centers induced by elastic interaction between
symmetrized displacements. Then, always in the framework
of a mean-field theory, we follow the decoupling procedure
used by Feiner [36] and successively by Dunn [37]. This
procedure, with respect to the phonon displaced operators
approach [31, 32, 34], has the great advantage of retaining the
vibronic effects associated with the local dynamics within a JT
center, essential to reproduce the magnetic excitation spectra
and the reduction of the ordered magnetic moment.

From the computational point of view, it is well known
that the calculation of the eigenstates of a vibronic system
requires handling matrices with a very large number of degrees
of freedom. However, when linear JT coupling is considered,
the matrices are in sparse form and then the Lanczos recursion
procedure [38, 39] can be successfully used, provided that
the initial state of the iterative procedure is chosen in a proper
way [40, 7].

This paper is organized as follows. In section 2 we
discuss the model Hamiltonian considered; in section 3 we
show the calculation procedure and in section 4 we give the
results obtained. Comments and conclusions are presented in
section 5.

2. Model Hamiltonian

The electron states of Pr4+ ions interacting with the lattice
displacements are well localized, therefore it is natural to
consider a model Hamiltonian given by a sum of the local
Hamiltonian Hi , describing the dynamics on the i th JT center,
and the intercenter Hamiltonian H j,i , describing the interaction
between different centers. The total Hamiltonian is thus
written [26] as

H =
∑

i

Hi + 1
2

∑

i

∑

j �=i

H j,i. (1)

In order to describe the single center Hamiltonian Hi

let us discuss first the electron contribution He. PrO2 has
a fluorite structure type, where the Pr4+ ion is at the center
of a cube whose vertices are occupied by eight O2−. The

Figure 1. Level splitting of PrO2 induced by the crystal field,
spin–orbit interaction and magnetic field. The line thickness is
proportional to the degeneracy of the level.

electron 4f1 configuration of the Pr4+ ion gives rise to a
ground 2F term 14-times degenerate including spin. The
cubic crystalline field splits this term into states having the
symmetry of the representations �5u, �4u and �2u of the Oh

group (Koster notation [41]), in increasing order of energy. The
label u indicating the symmetry with respect to the inversion,
is understood. The spin–orbit interaction λL · S produces a
further splitting of levels and, in the antiferromagnetic phase,
a molecular exchange field interaction Hmagn = −μ · H =
−gμBH · J, where H is a local effective field acting on each
magnetic dipole, completely removes the degeneracy [7]. In
figure 1 we show a scheme of level splitting produced by these
different interactions.

Recent neutron [24] and x-ray diffraction measure-
ments [5, 6] suggest that a superposition of two 1-k structures
oriented along mutually orthogonal directions is probably pre-
ferred. If we take the direction of the primary component of the
local magnetic field as the z axis, the secondary one is oriented
along the y axis, and defining h1 = gμB Hz and h2 = gμB Hy ,
we can write Hmagn = h1 Jz + h2 Jy . Therefore the electronic
Hamiltonian includes the crystal field, spin–orbit and magnetic
exchange interaction contributions:

He = HCF + HSO + Hmagn. (2)

Of course, the electronic Hamiltonian alone cannot repro-
duce the experimental issues, in particular the experimental
cross section in the range 0–160 meV and the reduction of the
ordered magnetic moment [2, 7].

Overcoming the Born–Oppenheimer approximation, the
electronic states of the Pr ion are assumed to interact with
phonon modes of proper symmetry localized around the Pr ion
(JT ion) [44, 26].

In this specific system, the JT coupling involves states
whose electronic part has �4 or �5 symmetry and consequently
only the breathing, the tetragonal εg and the trigonal t2g

modes are active. The breathing mode produces only a
line broadening and is neglected here; on the other hand
the symmetry of the distortion indicates the prevalence of a
trigonal mode. So we consider here a linear JT coupling with
the same trigonal mode both on �4 and on �5 multiplets.
In other words, we refer to a (�4 + �5) ⊗ t2 JT model.
The vibrational Hamiltonian (Hv) and the electron–phonon
Hamiltonian (He−p) are written, as usual, in the second
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quantization notation:

Hv(�i ) = h̄ω
(
a†

yzayz + a†
xzaxz + a†

xyaxy + 3
2

)
P�i , (3)

He−p(�i ) =
√

3

2
h̄ω

√
S(�i )

∑

k=yz,xz,xy

(a†
k + ak)Dk(�i ). (4)

Here �i is for �4 or �5; P�i is the projector on the electron-
spin eigenfunctions belonging to the �i multiplet; yz, xz, xy
indicate the rows of the t2g mode; S(�i ) is the Huang–Rhys
factor or the JT energy in units of h̄ω; Dk(�i ) are the Clebsch–
Gordan coefficient matrices expressed on the basis of the
electron functions belonging to the multiplet �i ; Hv and He−p

are understood as multiplied by the identity in the spin space.
In the following we refer to the JT Hamiltonian (HJT) as a sum
of vibrational and electron–phonon parts: HJT = Hv + He−p,
while the single center Hamiltonian is just the sum of the
electronic and JT parts

Hi = He + HJT. (5)

Let us now describe the intercenter Hamiltonian H j,i .
Since the 4f1 electron states of Pr4+ ion are well localized and
the experiments [6] reveal that the Pr ions are not displaced
from the equilibrium position, we have assumed that, in the
inter-site Hamiltonian H j,i , the contribution of the elastic
interaction between symmetrized displacements predominates.
Therefore we can write [26, 35, 27]

H j,i = Q†
i K(i − j)Q j , (6)

where the vectors Qi , Q j are a symmetrical combination
of displacements of the oxygen ions surrounding the Pr
ion in the site i and j ; K(i − j) is a matrix whose
components K�γ�′γ ′(i − j) represent the strength of the
interaction between a local mode �γ on the center i and a
local mode �′γ ′ on the center j (�γ indicates the row γ of
the irreducible representation �).

The interdependence between the modes of centers i and j
is decoupled in the framework of the mean-field approximation
following the approach first introduced by Englman and
Halperin [33] and used by Feiner and Dunn [36, 37] on
prototype systems. This leads us to replace the total
Hamiltonian H by a mean-field Hamiltonian H mf which results
in a sum of single-site terms H mf

i :

H mf
i = Hi +

∑

�γ

f�γ (i)Q�γ (i).

Here Hi is the already discussed single center Hamiltonian and
the second term, in the following called Hcoop, describes the
intercenter interaction. In the cooperative term the quantity

f�γ (i) =
∑

j �=i

∑

�′γ ′
K�γ�′γ ′(i − j)〈Q�′γ ′( j)〉 (7)

represents the strength of the cooperative interaction on the
center i and depends on the thermal average 〈Q�′γ ′( j)〉,
(〈Q〉 ≡ ∑

n ρn〈�n|Q|�n〉) so leading to a self-consistent
procedure. Here |�n〉 are the vibronic eigenstates and ρn are
the corresponding Boltzmann population factors.

In our system the JT active mode more appropriate to
describe the experimental results is the trigonal or t2 mode;
then the cooperative contribution becomes:

Hcoop =
√

h̄

ω

∑

k=yz,xz,xy

fk
1√
2

(
a†

k + ak

)
(8)

where the strength coefficients fyz, fzx , fxy can be better
specified by taking into account the symmetry of the
internal distortions (notice that we are using mass-weighted
displacements [26]).

Recent experimental works [5, 6, 24] have shown that the
magnetic structure and the structural distortions are related and
that the neutron diffraction data are consistent with a distorted
chiral structure, also confirmed by the theoretical work of
Jensen [28].

In [43] it has been shown that, in the antiferromagnetic
phase, it is possible to have a chiral distortion of the oxygen
cage taking into account the experimental magnetic structure
of Pr4+ ions with the primary component in the z direction
and the secondary one in the y direction, then assuming a
vibrational t2g mode of the oxygen ions and considering that
each O2− ion belongs to four different cells. The sum of
the contributions to the distortions from the different cells
produces a chiral distortion and the effective displacements
are a linear combination of symmetrized displacements Qyz

of the t2g mode. We assume that the same distortion is
found in the paramagnetic phase. The cooperative term has
to produce the same type of distortion, then 〈Qyz( j)〉 �= 0 and
〈Qzx ( j)〉 = 〈Qxy( j)〉 = 0 also after the diagonalization of the
full Hamiltonian. Then

fyz(i) =
∑

j �=i

Kyz,yz(i − j)〈Qyz( j)〉 (9)

alone contributes to the cooperative interaction. Performing
the sum and taking into account only the nearest neighbors, the
Hamiltonian (8) simplifies to

Hcoop = 1√
2

√
h̄ω

ω

[
Kyz〈Qyz〉

(
a†

yz + ayz
)]

(10)

where the constant Kyz represents the strength of the
cooperative interaction.

The mean-field Hamiltonian H mf
i just discussed allows a

quantitative connection between the properties of a JT center
and the cooperative effects involving the same center. In other
words, since the local dynamics of any center is explicitly
included in H mf

i , it is possible to investigate the influence of
such vibronic effects on the phase transitions as well as how the
cooperative term influences the single center vibronic effects.
In the single center Hamiltonian, however, we will consider
only a one-mode vibronic model.

3. Calculation procedure

In the calculations we take as basis functions of our cooperative
model the direct product of the 14 electron-spin function
partners of the irreducible representations �8, �7, �6, �

′
8, �

′
7

3
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and of the vibrational states |l, m, n〉, where l, m, n are the
occupation numbers for the partners of the t2 phonon mode,
in principle running from zero to infinity. It is well known that
the number of phonons to achieve stable eigenstates increases
with the strength of the JT coupling. In this way, the matrices
involved in the calculations can quickly reach too large a rank
to be diagonalized with traditional techniques. However, linear
JT coupling leads to matrices in a sparse form, so allowing
an efficient use of the Lanczos-recursion method [38, 39] with
a proper number of over-recursions. An alternative approach
to the diagonalization of the Lanczos matrices, particularly
convenient when the number of recursions becomes too
large, is constituted by the continued fraction expansion of
the diagonal Green function matrix element G00(E), whose
parameters are given by the coefficients (diagonal and off-
diagonal) of the Lanczos chain [45]. The poles of the
continued fraction give the eigenvalues of the vibronic system
and their residua give the projected density of states which is
immediately related to the optical spectra or to the differential
cross section.

In order to determine the average internal displacements
and the ordered magnetic moments, thermal averages of the
corresponding operators have to be calculated:

〈Qyz〉 = 1√
2

√
h̄

ω

∑

n

ρn〈�n|
(
a†

yz + ayz
) |�n〉

〈μ1〉 = gJ

∑

n

ρn〈�n|Jz |�n〉μB

〈μ2〉 = gJ

∑

n

ρn〈�n|Jy|�n〉μB.

Let us now look at the differential cross section in the
dipole approximation [46]:

d2σ

d
dω

ki

k f
=

(
γ e2

2mec2
gJ

)2

F2(κ) ×
∑

m,n

ρn

∑

α,β

(δα,β − κακβ)

× 〈�m|J †
α |�n〉〈�n |Jβ |�m〉δ(Em − En − ˜h̄ω). (11)

Here |�n〉 and |�m〉 are, respectively, the initial and final
vibronic states involved in the transitions, J is the total
angular momentum, κ is the scattering vector, ki and k f are
initial and final neutron wavevectors, F(κ) is the magnetic
form factor and ˜h̄ω is the neutron energy transfer ( ˜h̄ω =
h̄2

2m (k2
f − k2

i )). Usually the experiments are performed at
small κ where F2(κ) 	 1. So the main quantities to
be calculated in the differential cross section (11) are the
matrix elements 〈�n|Jα|�m〉, which require knowledge of the
vibronic functions |�m〉 and |�n〉. In principle, they could be
evaluated through a two-pass Lanczos worked out for all the
states of interest. However, as suggested in [7], it is enough
to determine the vibronic starting state for the transition of
interest. In fact, if we choose the initial state φ0 of the Lanczos
chain

|φ0〉 = Jα|�n〉√〈�n|J 2
α |�n〉

, (12)

the matrix element becomes

〈�m |Jα|�n〉 = 〈�m|φ0〉
√

〈�n|J 2
α |�n〉. (13)

Then the differential cross section is immediately given by
means of |cm,0|2, that is the projection modulus squared on
the initial state of the Lanczos chain of the vibronic states of
interest |�m〉 and their reconstruction is thus avoided.

4. Results

The diagonalization of the mean-field Hamiltonian H mf
i has

been carried out by means of the Lanczos recursion procedure
with a suitable number of over-recursions so as to obtain
reliable results and remove spurious eigenstates [47, 48].
When necessary, we have constructed the continued fraction
expansion of the ground state Green’s function G00(E), as
described in the previous section.

The basis functions are allowed to span a vibronic space
including up to a total number N of vibrational quanta chosen
by looking at the stability of the eigenstates with respect to
N . For the eigenvalues of interest we have required energy
differences less than 0.5% going from N to N + 1. In practice,
the maximum total number of phonons needed has been
N = 20.

A number of independent parameters are involved in our
model, so it is convenient to briefly comment on them. The
crystal-field parameters F4 and F6 [49] mainly influence the
energy separation among the multiplets �5, �4, �2 and not the
vibronic properties of the system, and their values have been
taken equal to 228 meV and 140 meV, respectively, in such a
way to have an energy separation of about 130 meV between
the two main transitions of the magnetic excitation spectra at
T = 10 K.

The value of the spin–orbit coupling constant λ, as usually
given in the literature, has been assumed corresponding to the
free ion value 100.5 meV.

The energy of the coupled phonon modes should be related
to the lattice dynamics of PrO2, but currently, to the best of our
knowledge, neither experimental measurements nor theoretical
calculations are available in the literature for the PrO2 phonon
branches. However, it is known that this energy determines
the energy separations of the vibronic levels. Therefore the
existence of a broad band centered at about 25–30 meV in
the experimental spectra of the differential cross section [2]
suggests a phonon energy mode of the same order. Here
we have used h̄ω = 30 meV, as in a previous single center
model [7].

We expect that the local effective magnetic exchange
interaction mainly influences the ordered magnetic moments
μ1 and μ2, and in fact the numerical simulations indicate
that h1 and h2 play a secondary role on the neutron inelastic
scattering spectrum, dominated by vibronic effects and CF
effects.

Therefore it looks reasonable to take h1 and h2 in the same
ratio as the measured magnetic moments. As a consequence,
h1 (or h2) alone has to be taken as a free parameter, then
phenomenologically estimated.

The strength of the JT coupling, here given in terms of
the Huang–Rhys factor S(�), directly influences the vibronic
properties of the system and it is probably the most important
parameter. It has been taken as a free parameter to be

4
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Figure 2. Mass-weighted 〈Qyz〉 distortion as a function of the

temperature for different values of Kyz (in meV (amu−1 Å
−2

)) with
St2(�4) = St2(�5) = 0.2; h̄ωt2 = 30 meV.

determined looking at the experimental neutron spectroscopic
measurements.

The quantity Kyz characterizes the cooperative JT
distortion and the phase transition temperature TD.

In this work we are interested particularly in the
cooperative effects; therefore, as a starting point, we have
calculated the thermally averaged symmetrized displacements
〈Qyz〉 as a function of the temperature for different values
of Kyz , assuming at first equal coupling to the �4 and �5

multiplets, with a trial value St2 = 0.2 (a value used in a
single center model). The results obtained are reported in
figure 2, which exhibits the behavior of the thermally averaged
displacement as a function of the temperature and calculated
for different values of the cooperative constant Kyz . It can
be seen that 〈Qyz(T )〉 is almost constant for small values of
T , then starts to decrease and goes rapidly to zero near to a
certain temperature, interpreted as the transition temperature
TD from a distorted to an undistorted phase. When the
cooperative constant Kyz increases, 〈Qyz(T )〉 increases too
and TD becomes higher.

In order to study the influence of the electron–phonon
coupling on the cooperative distortion 〈Qyz(T )〉 we have
performed calculations for different values of St2 , choosing

Kyz = 160 meV (amu−1 Å
−2

) with the other parameters as
before. The results obtained are shown in figure 3. As can be
seen, higher values of 〈Qyz(T )〉 correspond to higher values of
the vibronic coupling constant.

As can be seen from figures 2 and 3, stronger JT coupling
at each center and stronger cooperative interaction lead to
higher temperature for the phase transition. This is a second
order phase transition and the temperature dependence of
〈Qyz〉 in the neighborhood of the temperature TD has been
found to be 〈Qyz〉 ≈

√
TD − T .

If now St2(�4) is taken as different from St2(�5), we obtain
different values for the cooperative constants able to reproduce
the structural phase transition at T = 120 K for different
couples of St2(�4) and St2(�5). This situation is summarized in
table 1 where we report the values of Kyz for which 〈Qyz(T )〉
goes to zero for T 	 120 K and for different couples of St2(�4)

and of St2(�5). It is evident that the cooperative JT distortion
is favored by the increase in the electron–phonon coupling:

Figure 3. Mass-weighted 〈Qyz〉 distortions as function of the
temperature for different values of St2 = St2(�4) = St2(�5) with

h̄ωt2 = 30 meV, Kyz = 160 meV (amu−1 Å
−2

).

Table 1. Values of Kyz for which 〈Qyz(T )〉 	 0 at T 	 120 K
corresponding to different couples of St2(�4) and St2(�5).

St2(�5)

St2(�4) 0.0 0.2 0.4 0.6 0.8 1.0

0.0 — 204 195 187 179 171
0.2 185 166 156 148 141 134
0.4 173 147 139 132 126 120
0.6 149 133 126 120 115 110
0.8 136 123 116 111 106 102
1.0 125 113 108 103 99 95

increasing the strength of the JT coupling, the cooperative
strength which restores the same TD decreases.

Because there are many values of St2 that can lead to
a structural phase transition at T = 120 K, in order to
reduce them it is useful to look at the neutron scattering
spectrum. It is well known that the strength of the JT coupling
influences the vibronic functions and then the intensities of
the transitions involved in the calculated differential cross
section. The energies and the peak intensities of the vibronic
levels obtained allow us to identify two main transitions shifted
by about 130 meV, in the following called E0 and E1, and
other transitions of different intensities in between due to the
presence of many vibronic levels. A detailed analysis [43]
of the behavior of the intensities of the elastic transition E0

and the inelastic transitions E1 and Eint (where Eint indicates
the more pronounced intermediate transition), calculated as a
function of the strength of the JT coupling on the electron
states of �5 and �4 symmetries, suggests 0 < St2(�4) < 0.2,
0.5 < St2(�5) < 1 as convenient ranges to obtain a satisfactory
agreement with the experimental spectra.

We have also studied to what extent the calculated
spectrum depends on the cooperative parameter Kyz by looking
at the behavior of the intensities of the same previously
considered peaks as a function of the cooperative parameter
Kyz and taking the Huang–Rhys factors at fixed values, for
instance St2(�4) = 0.1 and St2 (�5) = 0.8. The results
obtained are shown in figure 4. As can be seen, the cooperative
parameter influences mostly the intensity of the intermediate
peak. The relative intensities of the calculated peaks can agree

5
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Figure 4. Intensities of the main peaks in the range 0–130 meV at
T = 10 K as a function of Kyz; St2(�4) = 0.1 and St2(�5) = 0.8;
h̄ωt2 = 30 meV.

with the experimental results for values of Kyz in the range

155 < Kyz < 165 meV (amu−1 Å
−2

), so in the following

we will use Kyz = 160 meV (amu−1 Å
−2

) for the calculation
at T < 10 K. This value is consistent with the values given
in table 1, but slightly higher (about 10%). In effect, with
St2(�4) = 0.1 and St2(�5) = 0.8, it is the value Kyz =
144 meV (amu−1 Å

−2
) that restores TD = 120 K. Probably

this slight dependence of Kyz on the temperature could indicate
the presence of some minor effects not considered in our
model, as, for instance, higher order terms in the JT coupling.

Let us now consider the ordered magnetic moment in the
antiferromagnetic phase. The measurements of Kern [1] in
1984 gave μ = (0.6 ± 0.1) μB; afterwards Gardiner and co-
workers [4] obtained μ = (0.68 ± 0.07) μB in crystals and
μ = (0.572 ± 0.012) μB in powders; more recently Gardiner
et al [5] have measured two mutually orthogonal components
of the magnetic moment at T = 2 K: μ1 = (0.65 ± 0.02)μB

and μ2 = (0.35 ± 0.04)μB.
In our calculations we have considered the magnetic

structure suggested in the more recent experiments [5], and
we have chosen h1 = 2h2, consistent with the experimental
ratio of μ1 and μ2. Then we studied the behavior of the
ordered magnetic moments at T = 2 K, taking Kyz =
160 meV (amu−1 Å

−2
) and all the other parameters fixed as

in the previous calculations. In figure 5 we show the results
obtained as a function of h2. The experimental values are
considered in a band as large as the estimated uncertainties.
For 0.8 < h2 < 1.2 meV, the calculated 〈μ1〉 agrees well with
the experimental value, instead 〈μ2〉 remains higher by about
25%.

In the upper part of figure 6 we show the differential
cross section calculated at T = 10 K (continuous line) with
St2(�4) = 0.1, St2(�5) = 0.8, h2 = 0.8 meV and Kyz =
160 meV (amu−1 Å

−2
).

It is worth noting that even if the strength of the magnetic
exchange interaction does not influence the overall structure of
the magnetic excitation spectra, when h increases the shift of
the main peak with respect to the zero energy increases too.
Choosing h2 = 0.8 meV (as in figure 6), the main peak results

Figure 5. Cooperative model: behavior of 〈μ1〉, 〈μ2〉 at T = 2 K as a
function of h2, h̄ωt2 = 30 meV, St2(�4) = 0.1, St2(�5) = 0.8,

Kyz = 160 meV (amu−1 Å
−2

).

Figure 6. Upper part: differential cross section at T = 10 K. Lower
part (color): differential cross section at T = 80, 100 and 130 K. The
parameters used are given in the text.

(This figure is in colour only in the electronic version)

are centered at about 3 meV as experimentally observed [2].
In the intermediate region, in between 20–80 meV far from
the main peak, there are several transitions with decreasing
intensity moving towards higher energies; other transitions are
found at about 160 meV. Of course, as shown elsewhere [7],
a multimode JT model could produce a yet larger number of
levels in the intermediate region, so improving the agreement
with the experimental results.

Next we calculated the magnetic excitation spectrum at
T > TN. The spectrum at T = 20 K (not shown here) is very
similar to that at T = 10 K, except that the first peak is now
centered on zero energy. The spectra at T = 80, 100 and 130 K
are shown in the lower part of figure 6. All the parameters
are taken equal as before, except that Kyz has been chosen

about equal to 150, 147, 143 meV (amu−1 Å
−2

), respectively
assuming a linear decreasing of Kyz when the temperature
increases and taking into account that Kyz has to be chosen

6
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Figure 7. Splitting of the ground state at T = 20 K. All the
parameters are the same as previously used at T = 10 K. The fyz

values corresponding to the Kyz chosen in figures 5 and 6 are:
fyz ≈ 120 in figures 5 and 6 (upper side); fyz ≈ 80, 56, 0 in the
lower side of figure 6.

equal to 144 meV (amu−1 Å
−2

) in order to obtain the transition
temperature at T = 120 K.

Some significant differences can be noticed from the upper
and lower parts of the figure: in the lower part the first peak
is centered on zero energy, the second one is shifted towards
lower energies, as well as those at about 130 and 160 meV;
moreover at T > TD the second peak disappears and the
intermediate transitions are very similar to those obtained in
a single center model [7]. This behavior agrees with the more
recent experimental spectra of Webster et al [24], even if the
shift calculated is more pronounced than the experimental one.
The role of the cooperative interaction in the intermediate band
of the magnetic excitation spectra at T < TD is so evident:
leading to a static distortion it provides a mechanism which
lowers the symmetry of the system and produces a splitting of
the four-degenerate ground state observed experimentally [5]
and confirmed by our simulations (see also figure 7 where the
splitting into double degenerate states E0, Eint is shown as a
function of the cooperative strength). As a consequence, at
T < TD a relevant contribution to the central band is due just
to the transitions towards the split level.

5. Conclusions

A microscopic model including the crystal field, the magnetic
exchange interaction and a polycenter dynamical JT coupling
has been proposed to interpret a number of experimental
facts such as anomalies in the neutron spectrum of PrO2,
the reduction of the ordered magnetic moment for T < TN,
the distortion of the oxygen cage and the structural phase
transition.

While a single center model of dynamical JT coupling
with phonons of trigonal symmetry could explain the reduction
of the ordered magnetic moment and also the main features
of the differential cross section, a cooperative interaction is
necessary to interpret the observed distortion at T < 120 K
and the splitting of the ground state into two doublets in the
paramagnetic phase [5].

The Lanczos recursion procedure, in connection with the
Green function formalism, has been followed and adapted
to calculate with high precision the vibronic levels of Pr4+
ions on PrO2. A suitable choice for the initial state
of the Lanczos procedure has allowed easy calculation of
the differential cross section for comparison with neutron
spectroscopy measurements. The ordered magnetic moment
too has been directly evaluated, as well as the distortion of
the oxygen cage and the temperature effects on the inelastic
neutron spectra.

The strength of the interactions taken into account have
been phenomenologically determined to achieve agreement
with the experimental results. Even if the model presents
some limitations (single mode JT coupling, magnetic exchange
interaction treated through a free parameter) it provides a
simple means for evaluating the main characteristic effects
of a dynamic cooperative interaction, gives a satisfactory
explanation for a number of experimental facts and supplies a
reasonable range of values for the strength of the interaction
involved, so representing a starting point for the next
interpretative models.
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